Yihui Quek - Hamiltonian Decoded Quantum Interferometry - IPAM at UCLA
Recorded 15 January 2026. Yihui Quek of EPFL presents "Hamiltonian Decoded Quantum Interferometry" at IPAM's New Frontiers in Quantum Algorithms for Open Quantum Systems Workshop.Abstract: We introduce Hamiltonian Decoded Quantum Interferometry (HDQI), a quantum algorithm that utilizes coherent Bell measurements and the symplectic representation of the Pauli group to reduce Gibbs sampling and Hamiltonian optimization to classical decoding. For a signed Pauli Hamiltonian H and any degree-l polynomial P, HDQI prepares a purification of the density matrix ρ_P(H)∝P(H)^2 by solving a combination of two tasks: decoding l errors on a classical code defined by H, and preparing a pilot state that encodes the anti-commutation structure of H. Choosing P(x) to approximate exp(−βx/2) yields Gibbs states at inverse temperature β; other choices prepare approximate ground states, microcanonical ensembles, and other spectral filters.
For local Hamiltonians, the corresponding decoding problem is that of LDPC codes. Preparing the pilot state is always efficient for commuting Hamiltonians, but highly non-trivial for non-commuting Hamiltonians. Nevertheless, we prove that this state admits an efficient matrix product state representation for Hamiltonians whose anti-commutation graph decomposes into connected components of logarithmic size.
We show that HDQI efficiently prepares Gibbs states at arbitrary temperatures for a class of physically motivated commuting Hamiltonians -- including the toric code and Haah's cubic code -- but we also develop a matching efficient classical algorithm for this task. For a non-commuting semiclassical spin glass and commuting stabilizer Hamiltonians with quantum defects, HDQI prepares Gibbs states up to a constant inverse-temperature threshold using polynomial quantum resources and quasi-polynomial classical pre-processing. These results position HDQI as a versatile algorithmic primitive and the first extension of Regev's reduction to non-abelian groups.
Learn more online at: https://www.ipam.ucla.edu/programs/workshops/new-frontiers-in-quantum-algorithms-for-open-quantum-systems/ Receive SMS online on sms24.me
TubeReader video aggregator is a website that collects and organizes online videos from the YouTube source. Video aggregation is done for different purposes, and TubeReader take different approaches to achieve their purpose.
Our try to collect videos of high quality or interest for visitors to view; the collection may be made by editors or may be based on community votes.
Another method is to base the collection on those videos most viewed, either at the aggregator site or at various popular video hosting sites.
TubeReader site exists to allow users to collect their own sets of videos, for personal use as well as for browsing and viewing by others; TubeReader can develop online communities around video sharing.
Our site allow users to create a personalized video playlist, for personal use as well as for browsing and viewing by others.
@YouTubeReaderBot allows you to subscribe to Youtube channels.
By using @YouTubeReaderBot Bot you agree with YouTube Terms of Service.
Use the @YouTubeReaderBot telegram bot to be the first to be notified when new videos are released on your favorite channels.
Look for new videos or channels and share them with your friends.
You can start using our bot from this video, subscribe now to Yihui Quek - Hamiltonian Decoded Quantum Interferometry - IPAM at UCLA
What is YouTube?
YouTube is a free video sharing website that makes it easy to watch online videos. You can even create and upload your own videos to share with others. Originally created in 2005, YouTube is now one of the most popular sites on the Web, with visitors watching around 6 billion hours of video every month.